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Abstract. The regional climate model (RCM) RACMO2 has been a powerful tool for improv-

ing surface mass balance (SMB) estimates from GCMs or reanalyses. However, new yearly SMB

observations for West Antarctica show that the modelled interannual variability in SMB is poorly

simulated by RACMO2, in contrast to ERA-Interim, which resolves this variability well. In an

attempt to remedy RACMO2 performance, we included additional upper air relaxation (UAR) in5

RACMO2. With UAR, the correlation to observations is similar for RACMO2 and ERA-Interim.

The spatial SMB patterns and ice sheet integrated SMB modelled using UAR remain very similar to

the estimates of RACMO2 without UAR. We only observe an upstream smoothing of precipitation

in regions with very steep topography like the Antarctic Peninsula. We conclude that UAR is a use-

ful improvement for RCM simulations, although results in regions with steep topography should be10

treated with care.

1 Introduction

With an annual mass turnover equivalent to a 6 mm change in global sea level, the Antarctic Ice Sheet

(AIS) plays an important role in sea-level change. The surface mass balance (SMB) and ice discharge

determine the net mass change of the AIS. Recent satellite mass budget studies, e.g. Shepherd et al.15

(2012); Velicogna et al. (2014), show a large temporal variability in the AIS mass balance acting on

monthly and decadal time scales. Although ice discharge can vary strongly on multi-year time scales,

the SMB variability is responsible for most of the interannual variability in ice-sheet mass balance.

Since AIS integrated SMB can not be measured remotely nor derived from in situ observations, the
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SMB and its variability must be derived from atmospherical modelling. Evaluation of the mean20

modelled SMB fields is possible (Favier et al., 2013; Van Wessem et al., 2014a), but until recently

a direct evaluation of annual SMB has been impossible in absence of suitable observations. The

newly developed technique of combining airborne radar with ice core data provides annual SMB

estimates on the scale of a glacier catchment (Medley et al., 2013, 2014). These data provide new

opportunities for evaluation of modelled SMB evaluation, specifically over the Thwaites Glacier25

catchment in West Antarctica.

The SMB can be obtained from reanalysis products like ERA-Interim, but regional atmospheric

climate models driven by reanalyses outperform the reanalyses in representing the spatial patterns

(e.g. Van de Berg et al., 2006; Lenaerts et al., 2012). Here, we use model data from the regional

climate model (RCM) RACMO2, version 2.3 (Van Wessem et al., 2014a). Over Antarctica, where30

the variability is set by the large-scale circulation, a RCM will unlikely improve upon the reanalysis

interannual variability unless data assimilation is applied. RACMO2 in its default version neither

has data assimilation nor relaxation to large-scale forcing fields in the upper atmosphere. Hence, the

free evolution of the model interior will partly remove the true interannual variability, deteriorating

the correlation with observational time series. Therefore, we discuss whether relaxation to large-35

scale forcing fields (nudging) is beneficial. This relaxation can be implemented by using spectral

and indiscriminate nudging. In the case of indiscriminate nudging, model fields are adjusted to

the large-scale forcing fields without regard to any spatial scales and structures in the modelled

deviations. As a result, modelled small scale patterns are partially suppressed because these patterns

are absent in the coarser resolution forcing fields. Relaxation with spectral nudging circumvents40

smoothing of the model state because relaxation is applied in the spectral space, which allows for

adjustment to only the longer wavelengths to the large-scale forcing fields. Spectral nudging is thus

potentially better than indiscriminate nudging, but it is computationally more expensive. Although

applied on different geographical locations and meteorological conditions, several studies (e.g., Pohl

and Crétat, 2014; Omrani et al., 2015) have shown that relaxation improves the representation of the45

surface climate and precipitation fields. These studies show that the wind and temperature fields are

the most important fields to constrain by nudging and that spectral and indiscriminate nudging both

improve the representation of the modelled fields.

In this study, we applied upper air relaxation (UAR), which is indiscriminate nudging applied

on the upper part of the atmosphere only. Indiscriminate nudging is justifiable because the upper50

atmosphere only is gently stirred towards the large-scale forcing fields. In this manner, UAR aims to

retain the improved spatial patterns provided by a RCM but also the resolved interannual variability

of ERA-Interim.
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2 Model, methods and observations

2.1 RACMO255

The Regional Atmospheric Climate Model RACMO2 has been used for over a decade to estimate

the climate and SMB of Antarctica. RACMO consists of the dynamics of the RCM HiRLAM,

the physics package of the ECMWF IFS (European Centre for Medium-Range Weather Forecasts

Integrated Forecast Systems) and a multilayer snow model including grain size dependent albedo and

snow drift. Here, we use RACMO version 2.3, which has been described and evaluated in detail for60

Antarctica by Van Wessem et al. (2014a,b). We compare the simulation presented by Van Wessem

et al. (2014a) with ERA-Interim (Dee et al., 2011) and an additional simulation using UAR. Both

RACMO2 simulations employ an identical domain and code except for the UAR and both were

driven by ERA-Interim and run from 1979 to 2013. The simulation domain has a resolution of

27 km, utilizes 40 vertical levels, and extends well outside Antarctica.65

2.2 Upper air relaxation (UAR)

The default version of RACMO2 is adjusted only at its lateral boundaries to weather fields from the

driving global model. The interior of the domain is allowed to evolve freely, hence, no nudging is

applied to the weather over Antarctica. This freedom is reduced if indiscriminate UAR is applied.

In that case, the upper part of the modelled atmosphere is weakly relaxed to the ERA-Interim fields.70

This relaxation is implemented in the following manner and is only applied on temperature and

wind fields. Humidity fields are not relaxed because that would lead to undesired distortions to

the modeled clouds and precipitation fluxes, as already observed in the lateral boundary relaxation

zones. The relaxation uses the scaled, terrain-following σ coordinate which ranges from 0 (zero air

pressure) to 1 (at the earth surface). Every time step, a model value (Φ) at location (x = {x,y,σ})75

is adjusted to the driving fields using

Φ(x) = (1−λτλσ(σ))Φ(x)R +λτλσ(σ)Φ(x)B, (1)

where Φ(x)R and Φ(x)B are the specific values from RACMO2 and the large-scale forcing, re-

spectively, valid for that location and time step. If x is located in the boundary relaxation zone, the80

boundary relaxation is applied additively on Eq. (1).

A relaxation time scale (τ ) of 6 h is applied, so for a model time step (tR) of 600 s, λτ , defined as

λτ = 1− 1

exp(tR/τ)
,

is 0.027. The vertical relaxation coefficient λσ(σ) is defined with85

σ ≤ 0.6 : λσ(σ) = (1 + cos(σπ/0.6))/2

σ ≥ 0.6 : λσ(σ) = 0.
(2)
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Figure 1 shows the values of σ and λσ as function of the pressure and elevation for a site at sea level

and 2000 and 4000 ma.s.l. This function allows a gradual stronger relaxation with elevation without

sharp gradients. Using of the terrain-following coordinate ensures that the near-surface fields are90

never relaxed to the driving fields.

2.3 Radar observations in West Antarctica

For the evaluation of interannual SMB variability, we use airborne radar observations made in the

Thwaites Glacier catchment (Fig. 2). The data and retrieval method are discussed in detail in Medley

et al. (2013). In brief, the snowradar tracks radar reflection layers along flight lines that are dated95

using firn cores drilled at strategic locations along the flight lines. Using radar wave propagation and

firn compaction modelling, the retrieval time difference between reflection layers is converted into

annual accumulation.

3 Results

3.1 Evaluation of mean SMB and climate100

First, the mean 1979–2013 SMB modelled by RACMO2 including UAR is compared to the reference

model version. Figure 3 shows that large scale SMB patterns are largely unchanged, the differences

are typically 10 % of the reference value. Integrated over the grounded ice sheet, the mean annual

SMB decreases by 80 Gta−1 (4 %) to 1979 Gta−1. Some areas along the coast receive more mass,

but in general precipitation and subsequently SMB decrease. This decrease is related to a small105

increase of upper air temperature without an equivalent increase of absolute humidity. At the 500 hPa

level, temperatures increase above Antarctica by 0.2 to 0.6 K (not shown) while relative humidities

decrease by 0 to 2 %. All in all, the difference in the modeled mean climate between the reference

and UAR runs is very limited. For example, mean surface pressures and 2 m temperatures differ

only at max 0.7 hPa and 0.6 K, respectively.110

3.2 Interannual variability

In Fig. 4 and Table ??, the integrated annual SMB derived from observations, ERA-Interim, and

the two RACMO2 runs are displayed. The ERA-Interim SMB, derived from precipitation minus

sublimation, is systematically lower than the observed SMB, due to underestimated precipitation.

The ERA-interim correlation with observed interannual variability, however, is high. With r = 0.93,115

87 % of the interannual variability is explained by the ERA-Interim. The reference RACMO2 sim-

ulation provides a large improvement on the mean SMB: RACMO2 is on average less than 2 %

drier than observed, leading to a lower RMSD. However, much of the representation of the inter-

annual variability is lost: the range is comparable but the correlation (r = 0.69) has deteriorated.

A closer inspection of Fig. 4 shows that model deviations have an episodic nature. For example,120
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the 1985–1991 SMBs are well modelled, then the reference model output deviates for 3 subsequent

years. Hence, lateral boundary conditions only do not provide enough constraints for RACMO2 to

reproduce day-to-day weather patterns for some years, but for some years it does. This intermit-

tent model drift is removed in the UAR simulation, which combines the best of both the reference

run and ERA-Interim. The mean SMB remains well modelled although the dry bias has increased125

to 5.5 %. This new simulation, however, reproduces 83 % (r = 0.91) of the observed variability,

a similar correlation with observations as the ERA-Interim, and has the lowest RMSD.

3.3 Regional patterns

Since ERA-Interim has a native resolution of 0.75◦, UAR dampens small scale upper air structures

in the RCM. Mesoscale topographic features like the Antarctic Peninsula are much better resolved in130

RACMO2 than in ERA-Interim. As a result, for the ERA-Interim fields that are fed into RACMO2,

the topographic effect on the circulation in the free atmosphere extends over a much larger area

than RACMO2and the maximum elevation of the mountain ridge is reduced. UAR thus introduces

topographic effects at locations where they are not modelled by RACMO2 and less topographic

effects at the mountain ridge. These artefacts affect the precipitation fields modelled on, for example,135

the Antarctica Peninsula (AP) as shown in Fig. 5. In the adjusted simulation, orographic precipitation

is modelled for a much wider area than the AP alone, leading to a decrease of precipitation on the

mountain range itself. Although temperature and humidity fields also show small scale disturbances

around the AP, the upper air wind field is the driving component. Prescribed orographical divergence

of the upper air flow enhances upward motion west of the AP, while on the spine of the AP, UAR140

reduces the orographical driven vertical motion. An additional test, in which UAR was applied on the

wind fields only, shows a similar dispersion of precipitation as the normal UAR simulation. A second

test, in which only the stratosphere was constrained, i.e. relaxation for σ ≤ 0.25 (Eq. 2), showed no

improvement of the patterns over the AP while the correlation of modelled SMB with snowradar data

for Thwaites glacier basin clearly deteriorated. We, therefore, conclude the topographic convergence145

and divergence of wind fields as prescribed by ERA-Interim affects the precipitation fields over the

AP. The limited amount of SMB observations and the high spatial variability of SMB across the AP

inhibit evaluation of the model results. Nevertheless, we assess that this dispersion of precipitation is

likely a deterioration of the precipitation fields, since in general RACMO2 has a better representation

of spatial precipitation patterns than ERA-Interim.150

4 Discussion and conclusions

In this manuscript, we show the potential of upper air relaxation to improve the representation of

interannual variability in regional climate models over Antarctica, specifically, RACMO2. For this

study, we used the regional climate model RACMO2 and the reanalysis ERA-Interim. With this
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method, the modelled interannual variability closely resembles the variability ERA-Interim, which155

reproduces the variability in the observations well. RACMO2 still largely improves the representa-

tion of the spatial patterns and total mass flux as compared to ERA-Interim. Nevertheless, a smooth-

ing of precipitation fields is observed, mostly over very steep topography. This effect is induced by

the prescribed upper air winds, leading to extended regions of forced large scale precipitation. Up-

per air relaxation is thus not an ideal method for rugged regions. In those regions, spectral nudging,160

which only adjust the larger spatial scales in weather patterns, might be a better approach. Although

not demonstrated with runs using other reanalyses or GCM boundaries, we believe that these con-

clusions are general valid for using UAR.
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Fig. 1. λσ(σ) (solid lines) and σ (dashed lines) as function of (a) pressure and (b) elevation for a location at 0

(black lines), 2000 (red lines) and 4000 (green lines)ma.s.l., respectively.

Table 1. Statistics of modelled SMB for Thwaites Glacier catchment, West Antarctica. The mean 1980-2009

SMB derived by snowradar is 457 mm w.e. a−1.

Model simulation Correlation (r) RMSD Bias:

[] [mm w.e. a−1] [mm w.e. a−1]

ERA-Interim 0.93 78 -75

Reference run 0.69 48 -17

UAR run 0.91 43 -35
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Fig. 2. Map of the study area, including catchment delineation (white line), elevation contours (black lines),

radar-derived SMB and the location of the RACMO grid points used for comparison (black dots). The back-

ground image is de MODIS Mosaic of Antarctica (Scambos et al., 2007).
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Fig. 3. Difference in SMB (%) between the UAR and reference RACMO2 simulation for 1979–2013. Grid

points with negative SMB in the reference simulation are masked grey.

Fig. 4. Observed and modelled integrated annual SMB for Thwaites Glacier catchment, West Antarctica

(Fig. 2).
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Fig. 5. Relative difference [%] in precipitation between the UAR simulation and the reference RACMO2

simulation over the Antarctic Peninsula.
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